
28 Seconds Later

JAVA RMI PROJECT

Features

• All features of RMI version except ability to join a game in progress

• Option to choose a player name when connecting to pre-game server

• CPU through leader (master)

• Infection management through leader (master)

• Converting disconnected human player to cpu

• Leader election if leaders is disconnect

RMI Architecture

GameThread

ViewManager
ModelManager

Model
ModelListener

Player

TileMap

PlayerMovedMessage

GameAction

ResourceManager

TileMapRenderer

GameThread
RMI

ModelManager_Stub

UnicastRemoteObject
UnicastRemoteObject

ViewManager_Stub
Remote

Remote
Remote

Remote

Serializable

SerializableSerializable

Serializable

Serializable

Gem
Serializable

Naming.lookup Naming.rebind

PlayerMovedMessage

register

Client
Server

New Architecture Com. Only

TcpNegotiation
Server

ViewManager TcpNegotiation
ServerThread

TcpNegotiation
Client

AllGameEngineClass
es

GameThread

StartInformation

PlayerMoved
Message

Client

Server

TcpNegotiation
ServerThread
TcpNegotiation
ServerThread

ModelManager
TCP

UDP multicast

start GameLoop Thread on register

nextloop

add
sendPlayerMovedMessage

receivePlayerMovedMessage

AllGameEngineClass
es

AllGameEngineClass
es

ComManagerTicker

Serializable

Serializable

TCP: StartInformation

• String status

– UPDATE, FULL, GO

• String multicastGroupIP

– ip of the multicastgroup onto which to broadcast

• int playerID

– client player number

• String[] players

– Names of the players

• boolean[] cpu

UDP: PlayerMovedMessage

• int playerNumber
– Id of the player sending the message

• int direction
– Int = Config.Direction

• int round
– Round to which message applies

• int health
– Health of the player;

• int infectedPlayerNb
– Nb only set by the master
– else -1

• int masterNb
– Nb of the master if master
– else -1

• no need for CPU flag because
– If (masterNb <> -1 && masterNb <> playerNumber) = CPU

ModelManager: gameLoop

• if(master): send PlayerMovedMessages for CPUs

• send myPlayerMovedMessage

• get nextloop(round) from Ticker (blocking)
=(PMM for every player)

• if(master & game running): check that there is
one infected, else infect someone randomly

• if(!master): update my CPU list

• update Players with health, direction, infection

• round++

Ticker: nextloop(round)

• Have we received all messages for the round?
– Yes: return them
– No: wait

• Check if we missed a message for too long? Yes
– We are the master -> TakeAction
– We are not the master

• Did we received a message from a master?
– Yes: do nothing master will resolve the problem
– No: wait

• longer delay passed perhaps master is dead in between ->
TakeAction

• TakeAction
– Am I the lowest playerID alive?

• Yes: become Master, generate CPU messages for missing players

Bumps in the road

• Javadoc

– Raise NullPointerExcepetion vs return null

• Strange Object behaviour in TCP

– without connection.reset()

• mutable array (static final String[] players)

• clone()!

• setTimeToLive(0)

– no comment…

Changes

• Removed RMI/serializable - gui.ResourceManager, gui.input.GameAction,
model.components.*, game.*

• config.Config – added methods to set a custom player name
• game.GameThread – change to start tcpNegotiationClient and handle response to start

game
• game.Model – added getNbPlayers()
• game.ModelManager – updated gameloop logic, ComManager, Ticker, player name

integration
• game.PlayerMovedMessage – added new fields (round, health, infectedPlayerNb,

masterNb)
• game.ViewManger – removed rmi disconnect handling, added round rendering counter
• gui.TileMapRenderer – added Custom name support
• gui.graphics.IntroJMenu – change menu for starting tcp server / and joining a game
• gui.graphics.IntroPane – added field for custom name
• gui.graphics.ScreenManager – changed startup form GameThread to

TcpNegotiationServer
• model.TileMap – support for custom name
• model.components.Player – support for custom name, generate directions for cpu

Changes

• network – all new
– ComManager – send and receive UDP multicast messages

– StartInfromation – Message Object used for TCP
communication

– TcpNegotiationClient – get start information form server

– TcpNegotiationServer – Server starts a
TcpNegotiationServerThread for each client connection

– TcpNegotiationServerThread – sending information on
each state change until start is received

– Ticker – Manages messages order and fallback if not
received

