
28 Seconds Later

JAVA RMI PROJECT



Features

• All features of RMI version except ability to join a game in progress

• Option to choose a player name when connecting to pre-game server

• CPU through leader (master)

• Infection management through leader (master)

• Converting disconnected human player to cpu

• Leader election if leaders is disconnect
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New Architecture Com. Only
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TCP: StartInformation

• String status

– UPDATE, FULL, GO

• String multicastGroupIP

– ip of the multicastgroup onto which to broadcast

• int playerID

– client player number

• String[] players

– Names of the players

• boolean[] cpu



UDP: PlayerMovedMessage

• int playerNumber
– Id of the player sending the message

• int direction
– Int = Config.Direction

• int round
– Round to which message applies

• int health
– Health of the player;

• int infectedPlayerNb
– Nb only set by the master
– else -1

• int masterNb
– Nb of the master if master
– else -1

• no need for CPU flag because
– If (masterNb <> -1 && masterNb <> playerNumber) = CPU



ModelManager: gameLoop

• if(master): send PlayerMovedMessages for CPUs

• send myPlayerMovedMessage

• get nextloop(round) from Ticker (blocking) 
=(PMM for every player) 

• if(master & game running): check that there is
one infected, else infect someone randomly

• if(!master): update my CPU list

• update Players with health, direction, infection

• round++



Ticker: nextloop(round)

• Have we received all messages for the round?
– Yes: return them
– No: wait

• Check if we missed a message for too long? Yes
– We are the master -> TakeAction
– We are not the master

• Did we received a message from a master?
– Yes: do nothing master will resolve the problem
– No: wait

• longer delay passed perhaps master is dead in between -> 
TakeAction

• TakeAction
– Am I the lowest playerID alive?

• Yes: become Master, generate CPU messages for missing players



Bumps in the road

• Javadoc

– Raise NullPointerExcepetion vs return null

• Strange Object behaviour in TCP

– without connection.reset()

• mutable array (static final String[] players)

• clone()!

• setTimeToLive(0)

– no comment…



Changes

• Removed RMI/serializable - gui.ResourceManager, gui.input.GameAction, 
model.components.*, game.*

• config.Config – added methods to set a custom player name
• game.GameThread – change to start tcpNegotiationClient and handle response to start 

game
• game.Model – added getNbPlayers()
• game.ModelManager – updated gameloop logic, ComManager, Ticker,  player name 

integration
• game.PlayerMovedMessage – added new fields (round, health, infectedPlayerNb,  

masterNb)
• game.ViewManger – removed rmi disconnect handling, added round rendering counter
• gui.TileMapRenderer – added Custom name support
• gui.graphics.IntroJMenu – change menu for starting tcp server / and joining a game
• gui.graphics.IntroPane – added field for custom name
• gui.graphics.ScreenManager – changed startup form GameThread to 

TcpNegotiationServer
• model.TileMap – support for custom name
• model.components.Player – support for custom name, generate directions for cpu



Changes

• network – all new
– ComManager – send and receive UDP multicast messages

– StartInfromation – Message Object used for TCP 
communication

– TcpNegotiationClient – get start information form server

– TcpNegotiationServer – Server starts a 
TcpNegotiationServerThread for each client connection

– TcpNegotiationServerThread – sending information on 
each state change until start is received

– Ticker – Manages messages order and fallback if not 
received




